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Abstract
We investigate the effective action for a non-BPS brane in a time-dependent
embedding. This action is considered as the action for tachyon and embedding
coupled to the brane gravity. We derive the slow-roll parameters from this
model.

PACS numbers: 11.25.Wx, 98.90.−k

1. Introduction

The observation of cosmic microwave background (CMB) has provided good evidence that
the universe, being described by the Friedman–Robertson–Walker (FRW) metric, underwent
a period of acceleration in its early times. The data from Type Ia super-novae pointed out
that the universe has accelerated very recently and remains in this state up till now. To
describe these phenomena in the string theory approach makes one of the most important
theoretical challenges. In seeking a description of these phenomena, one may pass to an
effective field theory in the low energetic approximation. The result then is a supergravity
theory in ten dimensions. In order to obtain 3-spatial dimensions, one shall either construct
a spontaneous compactification scenario or postulate that universe is a type of a 3-brane.
One of the most popular recent approaches to the inflation problem is to use an open string
tachyon on a non-BPS brane as an inflaton [1]. The non-BPS states are then realized as the
bounded states of a brane–antibrane system with tachyon condensation [2]. In this approach
(scenario), the inflaton potential should, in principle, be computed directly by substituting the
complete superpotential into the supergravity F-potential. Then the break of supersymmetry
in the brane–antibrane system leads to a subtle problem. The problem is that the exponential
tachyon potential cannot produce the last 60 e-folds [3]. In the other scenario, the role of
inflaton is played by the separation between D-branes [4, 5]. Both of the scenarios above are
accommodated in the form of a hybrid inflation where the tachyoinc open string fluctuations
end inflation [6]. In this paper, we shall study the inflation conditions in the system with a
tachyon field. This system corresponds to a non-BPS brane and is described by the DBI-like
action. This system is embedded in the background produced by BPS branes. The effective
action for a non-BPS brane consists of the Hilbert–Einstein action and the DBI-like action.
The form of the slow-roll parameters is obtained from this effective action.
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2. Non-BPS Dp-branes

An N coincident BPS Dk-branes produced a background in which metric GMN , a dilaton φ

and the RR potential Ã(k+1) are given by [7]

GMN dXM dXN = ληµν dXµ dXν + λ−1(dr2 + gmn dXm dXn), (2.1)

e−φ = λ(3−k)/2, (2.2)

Ã(k+1) = λ2 dt ∧ dX1 ∧ · · · ∧ dXk, (2.3)

where the warp factor λ is λ = [Hk(r)]−1/2 and Hk(r) is a harmonic function. In the warped
compactifications, the factor λ is constrained [8]. These BPS Dk-branes warp (8 − k)-
dimensional manifold Y with a metric gmn.

Let us consider a non-BPS Dp-brane (with p < k) which is embedded in the background
described above. The action for this non-BPS brane is [9]

S = −Tp

∫
dp+1ξ ṽ(T ) e−φ

√−det(γµν + 2πα′Fµν + Bµν + ∂µT ∂νT )

+ Tp

∫
v(T ) dT ∧ X∗Ã(k+1), (2.4)

where T is a tachyon field with a potential ṽ.
For embedding in the following form

XM(t, ξ 1, . . . , ξp) = (t, ξ 1, . . . , ξp, r(t, ξ 1, . . . , ξp), θ1, . . . , θ8−p), (2.5)

the action (2.4) (for F = B = 0) takes on the form

S = −Tp

∫
dp+1ξ ṽ(T ) e−φ

√
−det(ληµν + λ−1∂µr∂νr + ∂µT ∂νT )

+ Tp

∫
v(T ) dT ∧ X∗Ã(k+1) (2.6)

and the induced metric γµν is

γµν = ληµν + λ−1∂µr∂νr. (2.6a)

The DBI-like part can be rewritten as

S = −
∫

dp+1ξv(T )λ(4+p−k)/2
√

det(I + η−1S), (2.7)

where the matrix S has the following entries:

Sµν = λ−2∂µr∂νr + λ−1∂µT ∂νT , (2.8)

and v(T ) = Tpṽ(T ). We restrict ourselves to the case when the tachyon T and the field r
depend only on time t. Thus the action takes on the form [10]

S = −
∫

dp+1ξv(T )λ(4+p−k)/2

√
1 − λ−2 ·

r
2 − λ−1

·
T

2

+ Tp

∫
v(T ) dT ∧ X∗Ã(k+1). (2.9)

The DBI-like action (2.9) is appropriate for distances r larger than the fundamental string
length ls between a Dp-brane and a background k-brane. Otherwise one should replace this
action with the action of a complex scalar tachyon field with a potential. This potential was
calculated in [11] for p = 3 and k = 5.
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3. Inflation and slow-roll parameters

We investigate cosmological consequences of the action (2.9). This action is considered as
the action for the fields r and T which are coupled to the Einstein gravity on the worldvolume
of the brane. The action for the tachyonic field only is considered in [12]. We also restrict the
dimension p of a non-BPS brane to 3. Thus the effective action for a non-BPS D3-brane is
given by

Seff =
∫

d4x
m2

P

2

√−γR + S[r, T ], (3.1)

where the four-dimensional Planck mass mP is equal to (8πG)−1/2 and the scalar curvature R
is obtained from the metric (2.6a). The action S[r, T ] is given by (2.9). In the case when r is
homogenous and depends on time t the induced metric on the worldvolume has the form

ds2 = −σ dt2 + λδmn dxm dxn, (3.2)

where

σ = λ(r) −
·
r

2

λ(r)
. (3.3)

The Lagrangian for fields r and T is obtained from (2.9) and has the form L =
v(T ) e−

√
1 −

·
T

2

/σ where  = φ − 3
2 ln λ − 1

2 ln σ . The energy–momentum tensor for
the above system is

T00 = σv e−φ√
1 −

·
T

2

/σ

, (3.4)

Tmn = −λv(T ) e−φ(1 −
·
T

2

/σ)1/2δmn. (3.5)

Thus the field equations Rµν − 1
2γµνR = 8πGTµν take on the form

H 2 +
1

2

·
σ

σ
H

( σ

a2
− 1

)
= 8πG

σv e−φ

3

√
1 −

·
T

2

/σ

, (3.6)

2
··
a

a
+ H 2 −

·
σ

σ
H = 8πGσv e−φ(1 −

·
T

2

/σ)1/2, (3.7)

where a2 = λ and the Hubble parameter H is given by H = ·
a/a. The equation of motion for

T is obtained from the Lagrangian L:
··
T

1 −
·
T

2

/σ

+ (6 − k)H
·
T +

v′

v
σ − 1

2

·
T

1 −
·
T

2

/σ

·
σ

σ
= 0. (3.8)

For σ = 1 the field  is related to the warp factor λ as follows: e− = λβ+1/2. Let
β + 1/2 = (3 − k)/2. Thus equations (3.6) and (3.7) are reduced to the form (note that
e−φ = a2β+1)

H 2 = 8πG
va2β+1

3

√
1 −

·
T

2
, (3.9)
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··
a

a
= 8πG

va2β+1

3

√
1 −

·
T

2

(
1 − 3

·
T

2

/2
)
. (3.10)

The constraint σ = 1 says that the metric (3.2) is space flat with the scale factor a2. For
β = −1/2 (which corresponds to k = 3) and σ = 1, we obtain the well-known form of the
equations. We shall only consider the case when σ = 1.

In order to get conditions on inflation, we use the slow-roll parameters from [13]. In [14],
a similar problem was considered but it did not account for the dilaton field. These slow-roll
parameters are defined as follows:

εi+1 = d ln |εi |
dN

, (3.11)

where ε0 = H0/H and H0 is the Hubble parameter at some chosen time. The Hubble parameter
is considered here as the function of the e-foldings number N given by N = ∫ tend

tinit
H dt . The

parameters εi as the functions of time t are governed by the following equation:

Hεiεi+1 = ·
εi . (3.12)

The first two slow-roll parameters have the form

ε1 = − 1

H

dH

dT

dT

dN
= −(β + 1/2) + (β + 2)

·
T

2

, (3.13)

ε2 = 1

ε1

dε1

dT

dT

dN
= 2(β + 2)

·
T

··
T

[−(β + 1/2) + (β + 2)
·
T

2

]H

, (3.14)

where we used equations (3.8) (with σ = 1), (3.9) and the relation dT/dN =
·
T /H . Thus

equation (3.9) as the function of ε1 takes on the form

H 2

√
1 − 2

3
ε1 = 8πG

3
√

3
va2β+1

√
2β + 4. (3.15)

Differentiation of the above equation, with respect to the cosmological time t, gives (where
we used (3.12))

−2
√

(β + 2)̃ε1

[
1 − 2

3ε1 + 1
6ηε2

]
1 − 2ε1/3

= v′

vH
, (3.16)

where ε̃1 = ε1 + β + 1/2 and η = ε1/̃ε1. The second derivative of (3.15) gives

(2ε1 − ηε2) +
ε2

3

[
5ε1 − η(3η − 2)

2
ε2 − ηε3

]
γ 2

+ 4̃ε1

(
1 − 2

3
ε1 − 1

6
ηε2

) (
1 − 2

3
ε1 +

1

6
ηε2

)
γ 4 = v′′

(β + 2) vH 2
, (3.17)

where γ 2 = (1 − 2ε1/3)−1. Up to the first order in ε1 and ε2, we get

ε1 =
(

3

2

)5/2
m2

P l

(2 + β)3/2(1 − 4β)

v′2

v3
eφ − 3

2

1 + 2β

1 − 4β
, (3.18)

ηε2 = 3

√
3

2

m2
P l

(2 + β)3/2

[
4 − β

1 − 4β

v′2

v3
− v′′

v2

]
eφ − 6

(1 + β)(1 + 2β)

1 − 4β
, (3.19)
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where eφ = a−2β−1. From (3.19) we get the second parameter ε2 expressed by ε1

ε2 = 4(4 − β)

3
ε1 − 3s

v′′

v2
+ (1 + 2β)

[
2

3
(7 − β) +

2(1 + 2β) − 3sv′′/v2

2ε1

]
, (3.20)

where s = √
3/2m2

P l(2 + β)−3/2 eφ . The inflation takes place if 0 < ε1 < 1. The number of
e-foldings, expressed in terms of the tachyon field T and the dilaton field φ, is

N =
∫ Tend

T

H
·
T

dT = −
(

2

3

)3/2
(2 + β)3/2(1 + 16β + 4β2)

2m2
P l(1 − 4β)

∫ T

Tend

v2

v′ e−φ dT

+
1

3

∫ T

Tend

(
11 − 2β

2(1 − 4β)

v′

v
− v′′

v′

)
dT . (3.21)

Since the dimension of the manifold Y is 8 − k (see equations (2.1)–(2.3)), the case β = −1/2
corresponds to the background produced by the D-branes that are warping five-dimensional
manifold. In this case, the parameters ε1 and ε2 become the standard parameters considered
in the tachyon inflation.

4. Conclusions

In this paper, we considered gravity on the non-BPS D3-brane. The action for this system
consists of the Einstein–Hilbert action and the DBI-like action for a D3-brane. From this
model, we derived the slow-roll parameters. These parameters depend on the potential v,
the dilaton field φ and the dimension of a manifold on which the background D-branes are
warped. For the given potential v and the given background, one can compute these parameters
as the functions of T and r. The field r is obtained from the following constraint: σ = 1
(equation (3.3)) on a D3-brane. The inflation is ended for the fields T and r if
ε1 (Tend, rend) = 1. From ε1 and ε2, one can calculate the observable parameters as the
functions of T and r. In case when β = −1/2, we get the well-known parameters for the
tachyon inflation.
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